Donor derived infections in transplantation Epidemiology and surveillance

Peter Chin-Hong, MD MAS February 3, 2015

advancing health worldwide"

Objectives

- To understand rarer contemporary scenarios in donor derived infections that may affect screening decisions
- To articulate steps in epidemiologic investigation that improve patient safety
- To elaborate what perioperative transplant professionals can do to **mitigate the risk** of disease transmission

Disclosures

None

Case: Something to fear? The ugly

- Transplant recipient identified with posttransplant HCV and HIV infection with no obvious risk factors. Negative pre- transplant testing
- Reported to OPO, UNOS, and CDC
- Donor Look-back Assessment
 - Negative serology for HIV & HCV
 - Appropriately labeled as "high risk" by PHS Guidelines
 - Subsequent testing of post-transfusion serum was + for HIV and HCV by PCR
- All other recipients tested + for HIV & HCV

Case: Something near? The good

- Patient is a 56 year-old W male
- Underwent OLT
- CMV D+/R-
- Prophylaxis: Valganciclovir
- 9 days post-transplant
- Donor has + blood cultures drawn the day prior to donation
- Positive for Pseudomonas aeruginosa generally easily treated

- Male patient s/p deceased donor kidney transplant
- 17 months later: Presents to ED with R hip pain and radiation to the lower extremity
- 4 days later: Admitted with fever, diaphoresis, nausea, right lower extremity weakness, abdominal pain
- Eventually progressed to bilateral lower extremity weakness with ascending paresthesias

Case 1 Which is the culprit?

Case 1: Something rare? The bad

- Patient eventually developed encephalopathy, excessive salivation, hemodynamic instability
- Died 22 days after admission
- Rabies virus RNA detected in saliva, nuchal skin biopsy, postmortem CNS tissues
- Donor: Admitted with upper extremity paresthesias, seizure, autonomic instability
- Donor brain tissue archived: Rabies virus antigen detected. Raccoon rabies variant
- 3 other recipients well (heart, kidney, liver)

Questions to consider when accepting a potential donor with CNS process

- What is the potential donor's age and cause of brain death?
- Did the potential donor have a fever at presentation of illness?
- Were altered mental status and/or seizures part of the presentation that led to the donor's hospitalization?
- Was a CT of the head or MRI of the head or lumbar puncture consistent with an infectious process?
- Was the donor immunosuppressed?
- Did the donor have any unique environmental exposures?

Which of these organisms are safe?

- Organ donor: Hispanic female in early 40s with history of migraines
- Unresolving headache despite therapy
 - CT-angiogram of head: Right carotid cavernous fistula
 - Coiling and embolization
 - Intracranial bleed and craniotomy
 - Brain death
 - No autopsy performed

Organ recipients

- Right Kidney
 - 6 weeks post-transplant: fever, myoclonus, abnormal gait, altered mental status
 - Died; autopsy performed
- Heart/Left kidney
 - 6 weeks post-transplant: fatigue, nausea, vomiting, confusion, myoclonus, fever, and mild aphasia.
- Liver
 - post-transplant diarrhea, tremor, and altered gait
- Transplant center testing
 - Only notable finding +measles IgG and IgM in heart/L kidney recipient (CSF)

Microsporidium investigation slides

CDC Investigation

- Lymphocytic choriomeningitis virus and measles

 Negative
- Right kidney recipient autopsy
 - Microsporidia by H & E and immunohistochemistry
- Heart/left kidney recipient and liver recipient
 Urine PCR
- Organ donor
 - Investigational serology
- Evidence of Microsporidia infection identified in donor and all recipients

Case 2 Back in San Francisco

- 64 year-old male with a history of HCV cirrhosis and HCC s/p liver transplantation 2/10/14
- 5/13/14 pt complains of tremor in clinic
- Call from CTDN (local OPO)
- CDC to the rescue
- 6/1/14 pt started on albendazole for potential disseminated microsporidium
- 6/18/14 pt admitted with abdominal pain, nausea, vomiting found to have 5cm abdominal aortic aneurysm
- True, true and unrelated?

- 34 year-old W male with DM s/p kidney pancreas transplant 6 weeks prior
- Gram negative rod sepsis and abdominal rash
- U.S. born, no foreign travel. From Fresno, CA
- Donor was immigrant from Mexico. Immigrated
 6 years ago. Farmer

 45 year-old kidney transplant recipient presents with abdominal pain, shortness of breath and this rash on his buttocks

Cases 3 & 4

- Strongyloides rhabditiform larvae complete life cycle via peri-anal skin in IS hosts.
- Spread to lungs, skin, other areas
- Can cause bacteremia with GI bugs. Mortality rate is high
- Often no eosinophilia

Recent outbreaks reported to CDC and DTAC

- Three donors from Strongyloides endemic areas
- Transmission 1
 - 5 organs transplanted; 1 recipient affected (CTDN)
- Transmission 2
 - 5 organs; 2 recipients dead. Results known but not reported to TC
- Transmission 3
 - 4 organs; donor tested prior to transplantation; all recipients treated. No disease (NYODN)
- CDC
 - Since 2009, 7 other clusters; 20 recipients; 2 deaths
- NYODN
 - Screening since 2010
 - 10 positive donors
 - 355 screened

Abanyie F et al, 2014

Which of these organisms are safe?

Chin-Hong et al, Am J Transplant. 2011; (11)4 Roy et al, Am J Transplant. 2014; (14)1 Kumar et al, Am J Transplant. 2010; (10)1 Chin-Hong et al, ATC 2013

Potential donor derived transmission events DTAC 2005=2012

Reported cases to DTAC 2005-2012

Disease Types	# of Donor Reports	# of Recipients w/ Confirmed Tx	# of DDD-Attributable Recipients Deaths
Malignancies	282	69	25
Viruses	205	58	17
Bacteria	152	42	12
Fungi	106	37	13
Mycobacteria	63	11	3
Parasites	47	34	10
Other Diseases	47	1	0
Total	902	252	80

Lessons learned: DTAC data

Bacterial Transmissions

- Likely under-recognized & under-reported
- Often involves resistant bacteria
- Follow-up of outstanding culture data
- Fungal Transmissions
 - Endemic mycoses & Cryptococcus increasing
 - High morbidity and mortality
- Mycobacteria Transmissions
- Parasite Transmissions
 - Increase in Strongyloides, Chagas, & Amoeba
- Viral Transmissions
 - Increased recognition of PB19, LCMV
 - Need to use NAT to diagnose transmission, esp for HCV

Lessons learned: DTAC data

- Communications
 - Inefficient system currently in place in the US
- Poor systems for recognizing donor-derived disease transmissions
 - No cluster analysis
 - Severe outcomes not recognized by all recipient teams
 - Variable recognition and report
 - Management of positive cultures/result information locally
- Increased risk donors
 - Variable definitions used across US
 - Variable understanding of risk by clinicians and patients
 - Variable follow-up of recipients
- Human errors
- Living donors are not spared

What transplant professionals can do peri-operatively

- Ensure **donor screening** performed
 - Review medical & social history
 - Physical examination
 - Screening of blood samples of donor and recipient
 - Serology
 - Nucleic Acid Testing (NAT)
- Define the increased risk donor
 - OPTN-defined increased risk donor
 - New definitions
 - Increased risk of transmission of other infections may affect peri-transplant antimicrobials
- Screen high-risk recipients **post-transplant**

Screening 123

- 1. The **"Big 3"**: HIV, Hep B, Hep C
- 2. The **givens**: CMV, EBV, HSV, VZV, toxoplasma, syphilis, bacteria
- 3. The "**Next 3**": TB, Chagas, endemic mycoses
- 4. More **a la carte**: Strongyloides, West Nile
- 5. The **impossibles**: LCMV, microsporidia

How nature says, "Do not touch."

Hocevar S et al, Ann Intern Med; 2014; 160(4) Kotton C, Ann Intern Med; 2014; 160(4)

Schmunis GA. Mem Inst Oswaldo Cruz. 2007 Oct 30;102 Suppl 1:75-85

Objectives

- To understand rarer contemporary scenarios in donor derived infections that may affect screening decisions
- To articulate steps in epidemiologic investigation that improve patient safety
- To elaborate what perioperative transplant professionals can do to **mitigate the risk** of disease transmission